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Design of a Robust Adaptive Longitudinal Flight Control

Charles H. Dillon¤ and Jason L. Speyer†

University of California, Los Angeles, Los Angeles, California 90095-1597

A recently developed adaptive controller based on a disturbance attenuation problem is applied here to the
longitudinaldynamics of the F-18 high angle-of-attackresearch vehicle. For commanded change in angle of attack,
the controller blends aerodynamic controls with thrust vectoring. The blending is based on the uncertainty of the
aerodynamic control moment coef� cient vs the restriction on thrust vectoring using paddles. The development of
a controller for this complex control problem is based on an adaptive controller determined from solving, without
any approximation, the disturbance attenuation problem, where the control coef� cient matrix is uncertain. This
controller estimates online not only the system state but also the uncertain parameters in the control coef� cient
matrix. The control is determined by maximizing a nonconcave function with respect to the uncertain parameters
and is a function of the disturbance attenuation bound. In linear simulations, it is shown that as the bound is
decreased, the transient response is signi� cantly quickened, the thrust vectoring is used more heavily during the
transient, and the steady state is achieved with only aerodynamic control.

I. Introduction

O VER the past several years, techniques have been developed
for controlling uncertain linear systems subject to external

disturbances by considering a disturbance attenuation problem. In
this approach, a measure that is essentially the ratio of norms of
performance outputs to disturbance inputs is created, and a robust
compensator is sought that bounds this ratio below some limit. For
systems with � xed parameters,1,2 this problem was approached by
converting this disturbance attenuation function to a performance
index and then using a game theoretic approach to � nd the min-
imizing control for the worst-case maximizing disturbance. This
approach extended the results of H1 analysis to include not only
time-invariant systems on in� nite intervals, but time-varying sys-
tems on � nite intervals as well.

This disturbanceattenuation approach was subsequently applied
to a class of problems in which uncertaintyexists in the parameters
of the systemcontrolcoef� cientmatrix.3 Using a dynamic program-
ming approach,1 the problem was split into two parts. Optimizing
from current to � nal time yielded a controller as a function of the
states and parameters and an optimal return function that represents
the cost to go from the current time to the � nal time. Optimizing
from initial to current time yielded a � nite-dimensional estimator
structure that provides estimates of the current state and parameter
values based on past measurements up to the current time, as well
as an optimal accumulation function that represents the cost accu-
mulated up to the current time. An algebraic connection condition
was then determined by maximizing the sum of the optimal return
function and the optimal accumulation function with respect to the
states and parameters at the current time. This then resulted in a
compensatorstructure that is both robust in that it chooses a control
based on the worst-case disturbances and parameter uncertainties
and adaptive in that the uncertain parameters are estimated using
available measurements.

More recently,4 it has been shown that the resulting connection
condition represents a value function that satis� es the Hamilton–

Jacobi–Bellman equation when all players play their saddle strate-
gies. This is then shown to lead to an in� nite time extension of
the previous results. The results of Refs. 3 and 4 develop a robust
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adaptivecontrollerbased on a game theoreticapproach without any
approximation.The disturbance attenuation bound is used as a de-
sign parameter. Note that if the bound is allowed to be in� nite, this
approach produces the self-tuning regulator,5 a scheme based on
certainty equivalence, and gives an interpretation of that regulator
in terms of this more general theory.

The problem of � ight control design at high angles of attack
presents a natural application of such robust and adaptive compen-
sators. In previous work,6 a robust controllerwas designed for high
angle-of-attack� ight conditionsof the F-18 high angle-of-attackre-
search vehicle (HARV) aircraft. The compensatorwas designed for
zero steady-state tracking of pilot inputs by augmenting the state
space with integral error states. Additionally, due to the physical
limitations of the thrust vectoring hardware on the aircraft, addi-
tional washout states were added so that thrust vector commands
were faded to zero in steady state. The robust compensator design
was then used to expand the usable region of the linear controller
about each design point effectively.

One dif� culty that arises with such a design is that parameters in
the linearized system may change rapidly and in some cases switch
signs over dynamically varying � ight conditions.By estimating the
parameters that tend to vary the most and/or have the greatest effect
on system performance, it may be possible to increase the overall
performanceof the compensatoras parameter values become better
known. The unique advantage of a robust adaptive compensator
such as that which is presented in this paper is that by forming
the control based on the worst-case values of state and parameters,
the compensator can effectivelyuse the controls whose coef� cients
are better known until enough measurements have been taken to
reducethe uncertaintyin theunknowncoef� cients to thepointwhere
the associated control can be used with con� dence.

The longitudinal� ightcontrolfor theF-18HARV exempli� es this
process. The control objective is to track a step command in angle
of attack with good transient performance while fading the thrust
vectoring command to zero in steady state. The essential dif� culty
is that during the transient period the moment coef� cient due to
elevator de� ection M d e is not well known. Therefore, during the
transient, thrust vectoring command (TVC) d TVC should be used
more than elevator de� ection d e until the estimate of M d e is known
better with respect to a given level of uncertainty. As this occurs,
the thrust vectoring can be faded out and the steady-state angle of
attack is held by the elevator.

This papershows how the theorydevelopedin Refs. 3 and4 canbe
applied to this very challengingadaptivecontrolproblem. In Sec. II,
the results of Refs. 3 and 4 are reviewed, and the adaptivecontrol al-
gorithm is presented.Almost all of the game theoretic development
and interpretation are given in Refs. 3 and 4. Only those aspects
required to understand and develop the longitudinal � ight control
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designare givenhere. In Sec. III, the designof the longitudinal� ight
control system using our robust adaptive control law is developed.
The essentialrequirementsare zero steady-statetrackingerror, good
transientperformance, and fading out the thrust vectoring in steady
state due to restrictions on the continueduse of the thrust vectoring
paddles. These requirements are to be met in the presence of mea-
surement, process, and aerodynamic uncertainty.A key feature is a
design methodology that allows the thrust vectoring to be faded out
in the presence of some uncertainty in the moment coef� cient. This
process avoids an uncontrollabilitycondition inherent in the theory
as applied to this problem.

In Sec. IV, simulation results are given in a linear simulator. The
objective is to show and interpretsystem performanceimprovement
by this design methodology without the complexity of introducing
nonlinear dynamics and actuator dynamics. In particular,we essen-
tially compare the self-tuningregulator,which has an in� nite distur-
bance attenuation bound, with performance of the robust adaptive
controllerusingvariousvaluesof thedisturbanceattenuationbound.

II. Adaptive Control Algorithm
The problem of � ight control considered is an ideal application

of the theory developed in Refs. 3 and 4. The adaptive control al-
gorithm has been developed for a linear system having uncertain
coef� cients that multiply one or more of the controls. The resulting
control structure, outlined in this section, is both adaptive in that
unknown coef� cients are estimated online and robust in that the
degree of uncertainty associated with the unknown coef� cients is
used in determining the controller gains. Thus, controls whose in-
� uences are better known are used more vigorously than those that
are known with less certainty.

A. Disturbance Attenuation Problem
The problemof disturbanceattenuationis one of � ndinga control

that limits the effects of all admissible disturbances and uncertain-
ties on the performance of the compensated system. A disturbance
attenuationfunction is formed that is essentiallya ratio of the norms
of performanceoutputs over disturbance inputs. The problem, then,
is to � nd a positiveparameter h such that thisdisturbanceattenuation
function is bounded. This function can be written as

D = k ȳ k 2 / k w̄ k 2 · 1/ h h > 0 (1)

where the measures of performance outputs and disturbance inputs
are, respectively,

k ȳk 2 = k x(t f ) k 2
Q f

+ * t f

0

( k x k 2
Q + k u k 2

R ) ds (2)

k w̄k 2 = k »(0) k 2
P ¡ 1

0

+ * t f

0

( k w k 2
W ¡ 1 + k v k 2

V ¡ 1) d s (3)

with x representing the states, u the controls, w the plant input
disturbance, v the state measurement noise, and » the augmented
state de� ned as » = [xT ¯T ]T , where ¯ is the l -dimensional vector
of unknown control coef� cient matrix parameters. The dynamic
system under consideration is of the form

Çx = Ax + B(¯)u + C w (4)

z = Hx + v (5)

where the unknown parameters b j enter linearly into the control
coef� cient matrix

B(¯) = B0 +
l

ĵ = 1

B j b j Çb j = 0 (6)

To approach this problem, we reformulate the disturbance attenu-
ation problem as a differential game problem,2,3 with performance
index given by

J = 1
2 {k ȳ k 2 ¡ (1/ h ) k w̄k 2} · 0 (7)

For a givenvalueof the disturbanceattenuationbound 1/ h the prob-
lem becomes one of � nding the control u that minimizes this cost in
the presence of the worst-case maximizing disturbance inputs pro-
vided by initial conditions n (0) and state and measurement noise w
and v.

B. Dynamic Programming Solution
The minimax problem associated with the performance index

given by Eq. (7) is

min
u

max
» (0),w,v

J (8)

To approach this problem, we � rst write the dynamics and perfor-
mance index in terms of the augmented state » such that

Ç» = Ā(u)» + B̄u + ¯C w (9)

z = H̄» + v (10)

where

Ā(u) = [ A B1u ¢ ¢ ¢ Blu

0 0 ¢ ¢ ¢ 0 ] , B̄ = [ B

0] , ¯C = [ C

0]
and

H̄ = [H 0]

In Ref. 4, it was shown that to solve the minimax problem (8) more
easily, the original partial state information problem can be con-
verted to a full state information problem by � rst maximizing over
initial conditions »(0) and input disturbance w, then maximizing
over measurement disturbance v. Embedding the resulting maxi-
mizing strategies within the original cost yields a one-sided full
state information minimization problem, the solution of which can
then be obtained using dynamic programming and has been shown
in Ref. 4 to satisfy the Hamilton–Jacobi–Bellman equation.

The maximization over initial conditions and input disturbances
yields an estimator structure given by

Ç
»̂ = [Ā(u) + h P Q̄]»̂ + B̄u + P H̄ T V ¡ 1(z ¡ H̄ »̂) »̂(0) = »̂0

(11)

ÇP = Ā(u)P + P ĀT (u) ¡ P( H̄ V ¡ 1 H̄ T ¡ h Q̄)P + ¯C W ¯C T

P(0) = P0 (12)

where

Q̄ = [Q 0

0 0]
Embeddingthemaximizinginitialconditionsand inputdisturbances
in the original cost and maximizing over the measurement distur-
bances then yields a one-sided minimization problem, the solution
of which is obtainedvia dynamicprogramming.4 The optimal return
function X̄ (»̂, P, t ) for this minimization problem is then given by

X̄ (»̂, P, t ) = 1
2 max

»
[xT P (¯, t )x ¡ (» ¡ »̂)T ( h P) ¡ 1(» ¡ »̂)]

= 1
2
[x ¤ T P (¯ ¤ , t)x ¤ ¡ (»¤ ¡ »̂)T ( h P) ¡ 1(»¤ ¡ »̂)] (13)

where

»¤ = [ x ¤

¯ ¤ ]
is the maximizing value of » in Eq. (13) and P (¯, t ) satis� es the
Riccati equation

¡ ÇP (¯, t ) = P (¯, t) A + AT P (¯, t ) + Q

¡ P (¯, t)(B(¯)R ¡ 1 BT (¯) ¡ h C W C T ) P (¯, t )

P (¯, t f ) = Q f (14)
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and the minimax control of the original problem is given by

u ¤ = ¡ R ¡ 1 BT (¯ ¤ ) P (¯ ¤ , t )x¤ (15)

and »̂ and P are propagated by Eqs. (11) and (12), respectively.

C. Implementation
The adaptivecontrol strategy is implemented in three steps. First,

the estimator equations are propagated by Eqs. (11) and (12) as a
function of past control and measurement data. Second, the maxi-
mization of the optimal value function is performed as a function
of the updated values of the estimates and variance, ˆ̄ and P , to
determine the worst-case state and parameter values. Third, the op-
timal control (15) is formed as a functionof the worst-case state and
the Riccati matrix P (¯ ¤ , t ) obtained by evaluating Eq. (14) for the
worst-case value of the unknown parameters.

The dif� culty in implementing this solution is that the function
being maximized in Eq. (13) is convex in the state x , but, in general,
a nonconvex function of the unknown parameters ¯. This maxi-
mization can then be simpli� ed somewhat by � rst solving the max-
imization with respect to the state x that gives an algebraic relation
as a function of the parameter ¯. By the de� ning of

S
D
= P ¡ 1

we can partition the matrix S as

S = [ Sxx Sx b

Sb x Sb b ]
The expression for the worst-case state x ¤

t as a function of the pa-
rameter ¯ is then given by

x¤ = [h P (¯, t ) ¡ Sx x ] ¡ 1[Sx b (¯ ¡ ˆ̄ ) ¡ Sx x x̂] (16)

with the requirement that

h P (¯, t ) ¡ Sx x < 0 8 ¯ (17)

By the substitutionof Eq. (16) into Eq. (13), the maximizationprob-
lem can then be solved as a function of the unknown parameters
only.

Because the Riccati solution P (¯, t ) is dependent on ¯, the re-
sulting function to be maximized becomes quite nonlinear and may
have multiple local maxima. In general, with multiple uncertain pa-
rameters, the problem of � nding a global maximum can be dif� cult
to solve. However, we can make some observations that may assist
in determining the global maximum. First, we notice that as the
disturbanceattenuationbound 1/ h becomes large, the compensator
essentially assumes a certainty equivalenceform, such that ¯ ¤ = ˆ̄ ,
that is, the solutionapproachesthatof the self-tuningregulator.With
smaller values of 1/ h and limited information, such that P is large,
the function tends to be dominated more by the nonlinear term in-
cluding P (¯, t ). These properties can then be utilized to assist in
� nding a global optimum numerically.

D. Important Properties of the Solution
It has been shown4 that the optimal return function (13) satis� es

the Hamilton–Jacobi–Bellman equation.However, it is possible that
there may be cases where the global maximum is not unique. In
fact, in Ref. 1 a suf� ciency condition for a saddle point to exist
requires that the global optimum be unique. However, these points
are shown in Ref. 4 to represent a manifold of Darboux points7 at
which extremal paths loses global optimality and become merely
locally optimal, which in turn create a dispersal surface8 in the
differentialgame problem. If all controlsand disturbancesplay their
optimal strategies, however, it has been shown4 that the resulting
extremal trajectories may originate from this manifold but they do
not cross it, and therefore, the minimax problem produces a saddle
point control strategy.

It is quite possible, however, that this manifold will be crossed if
any of the players in the game do not play their optimal strategies.In
actuality, it is very likely that the disturbanceswill never attain their

worst-case strategies, but will more likely be random in nature. In
terms of the game cost, this means that using the value of the control
determinedby Eq. (15) will always producea cost that improves on
the worst case. In terms of implementation,the resultingcontrol(15)
may switch from one optimizing strategy to another, based on the
strategiesthatnature is playing,which may appearas a discontinuity
as the corresponding global maximum in Eq. (13) shifts from one
local maximum to another.

Additionally,it has also been shown,4 for zero initial state and pa-
rameter estimatesand the appropriateassumptionson stabilizability
and detectabilityof the dynamic system for all possiblevaluesof the
unknown parameters, that the control (15) does, in fact, satisfy the
disturbance attenuation bound (1). It is important, then, to ensure
that the controller does satisfy the disturbance attenuation bound,
that the state space for the system to be controlled is both stabi-
lizable and dectectable for all values of the unknown parameter ¯.
These conditionsmotivate the implementationprocedure in Sec. III
for including the fading of thrust vectoring in the controller design.

III. Flight Controller Design
The short-periodlongitudinaldynamicsfor the F-18 HARV9 con-

sist of two states (angleof attack a and pitch rate q) and two controls
[elevator de� ection d e and TVC d TVC] from the dynamic model for
the robust � ight control design. The longitudinal dynamics are ob-
tained from a nonlinear model by linearizing the dynamics of the
airplane about a particular trim condition.For this particular exam-
ple, a � ight condition trimmed in steady level � ight at an altitudeof
25,000 ft and an angle of attack of 10 deg was selected. The basic
dynamic system, then, can be written in the form

Çxp = Apxp + Bp (M d e )u + w (18)

z p = xp + v (19)

with

xp = [ a

q] , u = [ d e

d TVC] , Ap = [ Z a Zq

M a Mq]
Bp(M d e ) = [ Z d e Z d TVC

M d e M d TVC
]

The actuator dynamics were considered to be suf� ciently fast with
respect to the longitudinalmode so as to be neglected.

We consider two design objectives in constructingthe state space
to be used in designing the compensator. The primary objective
of the compensator will be to track step commands in angle of
attack a , with zero steady-stateerror and good transient response in
the presence of parameter, measurement, and process uncertainty.
As a secondary objective, we would like to fade the thrust vector
control command d TVC to zero in steady state to avoid damaging the
paddles that are used as actuators for thrust vectoring on the F-18
HARV. Because the controleffectivenessof the elevator can change
at varying � ight conditions,we consider M d e as the most important
uncertain parameter to be estimated online.

To accomplish our � rst objective,we formulate a change of vari-
ables and de� ne the error coordinatee a as the error between actual
angle of attack a and commanded angle of attack a c :

ea = a ¡ a c (20)

To track step commands in a with zero steady-stateerror, a constant
value of the control de� ection d e will be required in steady state.
To assure that the problem remains well posed, we must form a
new state space by differentiating the error so that the control in
the dynamic system used in the design synthesis is actually the
derivativeof the actual physical control.This assures that we have a
state space for which the quadratic performance index will remain
� nite and that the design state and control will converge to zero as
� nal time becomes in� nite.10 De� ning an error state as

xe = [ xe0

xe1
] xe0 = [e a

q ] xe1 = Çxe0
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we have

Çxe = Aexe + Be(M d e ) Çu + C e Çw (21)

ze = Hexe + v (22)

with

Ae = [0 I

0 Ap] , Be(M d e ) = [ 0

Bp(M d e )]
C e = [0

I] , He = [I 0]

Next, we need to incorporate a means of fading the TVC d TVC to
zero in steady state. To do this, we include d TVC in the state space,
which we can then weight in our performance index so that it is
driven to zero in steady state. A problem that arises when augment-
ing the state space in this way, however, is that the resulting state
spacebecomes uncontrollablewhen the parameter M d e goes to zero.
We must then modify the state space in such a way that the system
remains stabilizable for all values of M d e . To do this, we rede� ne d e

as two independent controls, ( d e)unknown and ( d e)known, such that

d e = ( d e)unknown + ( d e)known

where ( d e)known is multiplied by a � xed value of the control coef-
� cient (M d e )0 that allows the system to remain controllable for all
valuesof the unknown valueof M d e that multiplies( d e)unknown. Then,
for small values of ( d e)known ¼ 0,

M d e d e ¼ M d e ( d e)unknown

where ( d e)known is assured to remain small by weighting it very
heavily in the performance index.

The structure of the adaptive compensator is then as shown in
Fig. 1. First, the estimates of the error state xe and the unknown
parameter M d e are formed by propagating Eqs. (11) and (12), with
inputs of Çu ¤ and ze , where

»̂ = [ x̂ e

M̂ d e
] , Çu ¤ =

é
êë

( Çd e) ¤
unknown

( Çd e) ¤
known

Çd ¤
TVC

ùúû
, ze = zp ¡ [ a c

0 ]
The new optimal control rates, Çu¤ just as de� ned, are then cal-

culated as a function of »̂, P, and d TVC , so that the state used in
calculating the optimal control is

xc = [ xe

d TVC]
In solving the maximization problem (13), we note that the state
d TVC is actually something that we calculate directly and that its
dynamics are decoupled from the rest of the states, so that we may
simply adjoin the constraint d TVC = ˆd TVC to Eq. (13). Partitioning
the Riccati matrix P in Eq. (14) as

P = [ P x x P xu

P ux P uu]

Fig. 1 Adaptive compensator block diagram.

the worst-case state as a function of the uncertain parameter ¯ be-
comes

x ¤ = [h P x x (¯, t ) ¡ Sx x ] ¡ 1[Sx b (¯ ¡ ˆ̄ ) ¡ Sx x x̂ ¡ h P xu d TVC] (23)

Solving the maximization(13), Çu ¤ is then formed as in Eq. (15). The
optimal control rates are then integrated to form the actual control
commands that are used in the plant.

As an additional note, for the state space and control variables
available, it is not possible to both track step commands in a and
fade the control d TVC to zero in steady state while simultaneously
controllingthe pitch rate q. For this example, then,q is not weighted
in the performance index. To be able to control q we would either
need to include another aerodynamiccontrol such as � ap de� ection
or to allow the TVC to attain a nonzero steady-state value.

IV. Simulation Results
To demonstrate the behavior of the adaptive controller at vary-

ing values of the parameter h , step responses in angle of attack
were simulated using the linearized model dynamics. A step input
of 10 deg from the initial trim condition in steady level � ight at
10-deg angle of attack and 25,000 ft altitude was commanded. The
linearized system coef� cients at this � ight condition are given in
Table 1. The initial state and parameter estimates were all taken to
be zero to guarantee disturbance attenuation,as described in Ref. 4
for the in� nite time problem.

The associated state and control weighting matrices were chosen
to give acceptablestep responsewith reasonablecontrol de� ections
at the nominal values of the unknown parameter. These matrices
were then chosen as

Q =

é
êêêêë

1 0 0 0 0

0 0 0 0 0

0 0 (0.01)2 0 0

0 0 0 (0.02)2 0

0 0 0 0 1

ùúúúúû
, R = é

ë
0.25 0 0

0 64 0

0 0 0.5

ù
û

and the plant and measurement disturbance weightings W and V
were given by

W = [ (0.05)2 0

0 (0.05)2] , V = [(0.25)2 0

0 (0.025)2]
where the units of the input disturbancesaffecting angle of attack a
and pitch rate q are in degrees per second and degrees per second
per second, respectively, and the measurement disturbances are in
degrees and degrees per second.

Simulation results are presented � rst for the case of worst-case
input and measurement disturbances resulting from the maximiza-
tion in Eq. (8) and then for an ensemble of 20 simulation runs using
random disturbanceswith power spectral densitiesgiven by the ear-
lier W and V . The initial true value of the unknown parameter M d e

is taken as its actual value, shown in Table 1, rather than the worst
case obtained from the maximization in Eq. (8), which allows for
a situation, as described in Sec. II.D, where the control strategy
may switch at a given point in time. The initial state weighting P0

was then taken to be the steady-statevalue of P found by assuming
u = 0, starting with an initial identity matrix.

Table 1 Linearized system
coef� cientsa

Coef� cient Value

Z a ¡ 0.3367
Zq 0.9976
M a ¡ 0.2065
Mq ¡ 0.1229
Z d e ¡ 0.0693
Z d TVC ¡ 0.0278
M d e ¡ 2.7320
M d TVC ¡ 1.4747

aHere a = 10 deg and h = 25,000 ft.
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Fig. 2 Angle-of-attack step response.

Fig. 3 Elevator command rate Ç±e.

To determine the maximizing value of the return function (13)
for h > 0, the function was � rst evaluated over a grid of parame-
ter values. A local maximization was then performed originating
from the maximizing parameter value along the grid. For h =0, the
return function (13) becomes a quadratic form, such that »¤ = »̂,
and the compensator becomes a certainty equivalence controller,
equivalent to a self-tuning regulator. Simulations were performed
at increasingvalues of h and compared to the certainty equivalence
compensator, with h = 0, to evaluate the effect of the disturbance
attenuation bound on performance and robustness.

In Fig. 2, 10-deg step responses in angle of attack are presented.
As h is increased, which means that the disturbance attenuation
bound is decreased, the step responses begin to exhibit slightly im-
proved transient response. At h = 5, this improvement is somewhat
more dramatic, and at h = 10, the response is much faster than at
h =0. Also, as h increases, the average responses with random dis-
turbance are slightly faster than those with the worst-case distur-
bances. Even with worst-case disturbances, though, performance
does not suffer signi� cantly from the average with random distur-
bance. In fact, the average responsesshown in Figs. 3–10 differ only
slightly from the response using worst-case disturbances.

Comparing the control commands and command rates in the av-
erage response with random disturbance, we can better understand
how the increasein the parameter h bringsabout the improvementin
step response. For smaller values of h , we see that the commanded
elevatorde� ection rate Çd e, shown in Fig. 3, andelevatorde� ection d e,
shown in Fig. 4, are used more heavily initially than the thrust vector
command rate and thrust vector command, shown in Figs. 5 and 6.
As h is increased, however, the controller begins to hedge against
the uncertaintyassociated with the uncertain parameter M d e affect-

Fig. 4 Elevator command ±e.

Fig. 5 Thrust vector command rate Ç±TVC.

ing the elevator command and begins to use the thrust vectoring
more heavily than the elevator command. In essence, the controller
hedges against using the elevator initially, due to its associated un-
certainty, while relying more heavily on the thrust vectoring,whose
effect is better known, until enoughinformation is gathered to allow
the elevator to be used with greater certainty.

The estimated values of M d e shown in Fig. 7 re� ect the heav-
ier utilization of elevator for h =0. As h is increased from 0, the
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Fig. 6 Thrust vector command ±TVC.

Fig. 7 Estimated parameter value ÃM±e , ÃM±e0 = 2.

Fig. 8 Worst-case parameter M ¤
±e

, ÃM±e0 = 2.

estimator response is initially slower, but becomes faster as h in-
creases, with h =10 actually producing a faster response initially
than h =0. The parameter estimates also converge closer to the true
parameter value as h increases.

The key factor in the behavior of the controller, however, lies
in the worst-case parameter value M ¤

d e
(Fig. 8). Initially, the true

value of the parameter is highly uncertain, which is re� ected in
the variance of the parameter M d e , shown in Fig. 9, and the cross

Fig. 9 Parameter variance PM±e
.

Fig. 10 Cross covariance PM±e Çq .

Fig. 11 Cost vs parameter, µ = 10.

covariance between the parameter and state, as shown in Fig. 10.
As the parameter value becomes more well known, this worst-case
value begins to follow the estimate M̂ d e , and the controller then
begins to use the elevator de� ection more con� dently.

The worst-caseparameter value is the value of the parameter M d e

thatproducestheglobaloptimumof thecost (13). This cost is shown
for increasing values of time t for the case of h =10 with worst-
case disturbance in Fig. 11. These curves demonstrate that, as time
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increases, two local maxima are formed. The dominant shape of
the curves is that of the quadratic form centered at the estimated
value of the unknown parameter, with the second smaller peak cor-
responding to the nonlinear portion of the cost. As time increases
and more information is gathered about the unknown parameter,
the peak associatedwith the quadratic form becomes dominant, and
the controller essentially switches its strategy to use a value of M d e

closer to the estimated value. Note that this switch occurs in the
control rate, which is a result of using the system of error coordi-
nates as the design state space. In Fig. 11, this change in strategy
occurs at t =1.05. The end effect of this switch is that the thrust
vector control, whose coef� cients are known with more certainty,
is used more heavily until enough information is gathered about the
uncertain coef� cient M d e to use the less certain elevator de� ection
with con� dence.

V. Conclusions
The results presented demonstrate the performance of a robust

adaptive compensator based on disturbance attenuation. These re-
sults show that, as the disturbance attenuation bound is lowered,
the compensator tends to rely more on controls whose effects are
known with more certainty until estimates of uncertain coef� cients
are known with enough con� dence to be used effectively.

This type of adaptive compensator shows great potential for sys-
tems having uncertain control parameters, such as those that occur
in � ight control. Without any a priori restrictionson the structureof
the compensator, the disturbance attenuation approach results in a
design that is both robust in that it tends to hedge against uncertain
states and parameters and adaptive in that it uses the measurement
history to update its knowledge of the unknown parameters. This
type of design is particularly useful for systems, such as the � ight
control system examined in this paper, in which parameters may
vary in magnitude and/or sign over varying conditions.

By using this robust adaptivecompensator,the controllernot only
has the ability to update its information of the system model, but is
designed in such a way that it chooses its control based on how
well this model, or parameters within the model, is known. As
more information becomes available to the controller, the param-
eters within the model become better known, and the controller is
able to use this increased certainty in the system model to utilize
controls that are most affected by the uncertain coef� cients with
more con� dence. By the use of the controls that are known with the
greatest certainty, the overall performance of the system can then
be improved. Also, by the choice of the control that minimizes the
cost based on the maximizing disturbances, the system is made ro-
bust to these disturbances, which was demonstrated in the results
presented.

The main research issue that must still be addressed to further
improve the implementation of this technique is the investigation
of ef� cient means of performing the maximization in Eq. (13) by
exploiting the structure of the Riccati solutions involved. The ap-
proach taken was to form a grid of parameter values over which
the return function was evaluated and subsequently performing a
local maximization originating from the maximizing value along
the grid. This provides a reasonablemethod of implementation,but
some tradeoffmust be made between accuracy of the maximization
and the computational requirements involved in evaluating a large
number of grid points. Other issues being investigated include ap-
proximate techniques that may allow unknown state coef� cients to
be estimated as well as dynamically varying unknown parameters.
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